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Matrix effects on lifetime statistics for carbon 
fibre-epoxy microcomposites in creep rupture 
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Experimental results are presented for the strength and lifetime in creep rupture of 
carbon-epoxy microcomposites consisting of seven carbon fibres (Hercules IM6) within an 
epoxy matrix (Dow DER 332 epoxy with Texaco Jeffamine T403 curing agent) in an 
approximately hexagonal configuration. Special attention was paid to clamping, specimen 
alignment, shock isolation and accurate lifetime measurement. The results were analysed using 
a previously developed model, which involves a Weibull distribution for fibre strength and 
micromechanical stress redistribution around fibre breaks where the matrix creeps in shear 
following a power law. The model yields Weibull distributions for both microcomposite 
strength and lifetime where the respective shape and scale parameters depend on model 
parameters such as the Weibull shape parameter for fibre strength, the exponent for matrix 
creep, and the effective load transfer length and critical cluster size for failed fibres. 
Experimental results were consistent with the theory, though a fractographic study suggested 
time-dependent debonding along the fibre-matrix interface as being a key mechanism. 
Arguments were given to suggest, however, that the overall analytical forms would essentially 
be preserved. The results were compared with earlier results using a different epoxy system 
(Dow DER 331 epoxy with DEH 26 curing agent). Values for the matrix creep exponent and 
the effective load transfer length were about double and triple respectively the values from the 
earlier study, leading to slightly reduced strength, about one-half the variability in lifetime, but 
almost one-half the value of the exponent for the power law relating microcomposite lifetime 
to stress level. 

1. I n t r o d u c t i o n  
For almost three decades, research has been conduc- 
ted to develop lightweight, filamentary composite 
structures which can reliably sustain high tensile loads 
for long times. An important material for such appli- 
cations is carbon fibres in a polymer matrix such as 
epoxy, and possible structures include filament-wound 
pressure vessels, flywheels, gas centrifuges, rocket mo- 
tor casings, structural beams, and tension members in 
cables for cable-stayed bridges. In many such settings, 
failures can have disastrous consequences. 

In the above applications the composite is subject 
to creep rupture (variously called stress rupture, creep 
fatigue, static fatigue and stress-life rupture), a highly 
random and catastrophic phenomenon. Experimental 
studies on resin impregnated strands (see Phoenix 
et al. [1] for a review of the literature) show large 
statistical variations in lifetime for ostensibly identical 
specimens. More importantly, the sensitivity of me- 
dian lifetime to stress level, as represented say by a 
power law, varies widely with the composite material 
system and may show substantial variation in the 
power exponent even for systems with apparently 
similar fibre and matrix mechanical properties. More- 

over, the shapes of the lifetime distributions, especially 
in the lower tails important to reliability calculations, 
may differ unexpectedly. This variation introduces 
large uncertainty in establishing structural reliability. 

Failure in these composites is generally a complex 
statistical process involving scattered failure of fibres 
at flaw sites, overloading of neighbouring fibres by 
way of stress transfer through the matrix, and the 
growth of clusters of adjacent fibre breaks to a critical, 
unstable size. In creep rupture, failure is generally 
driven by a combination of thermally activated flaw 
growth and failure in the fibres, viscoelastic creep in 
the matrix near fibre breaks, and progressive debond- 
ing at the fibre-matrix interface. The latter two mech- 
anisms result in a widening pattern of overloading on 
fibres next to existing breaks causing additional 
breaks. The result is a sequence of adjacent fibre 
breaks which grow in time and form small clusters, 
one of which becomes catastrophically unstable. 

In carbon fibre-polymer matrix composites it is often 
assumed that the graphite fibres themselves are vir- 
tually immune (at room temperature) to creep rupture, 
so that matrix creep and progressive interface de- 
bonding are the key time-dependent mechanisms. Far- 
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quhar e t  al. [2] recently studied the creep rupture of 
single Hercules IM6 graphite fibres, and while 
measurable creep rupture was observed, the power- 
law exponent relating median lifetime to stress level 
was about 300. This value is several times larger than 
the value for the exponent determined by Phoenix 
e t  al. [1] for microcomposites of the same fibres in an 
epoxy matrix, and will be almost an order of magni- 
tude larger than the values reported here. Thus, we 
will be justified in neglecting the creep rupture of the 
fibres in modelling and interpretation of our experi- 
mental results. 

The main purpose of the present paper is to report 
and interpret strength and creep-rupture results on 
carbon-epoxy microcomposites consisting of seven 
carbon fibers (Hercules IM6) within an epoxy matrix 
(Dow DER'332 epoxy with Texaco Jeffamine T403 
curing agent) in an approximately hexagonal config- 
uration and tested at a 30 mm gauge length. Special 
attention has been paid to clamping, specimen align- 
ment, shock isolation and accurate lifetime meas- 
urement; thus the main shortcomings of the earlier 
study [1] in our laboratory on a similar system 
(Hercules IM6 fibres in Dow DER 331 epoxy with 
DEH 26 curing agent), have been largely overcome, 
especially with respect to shock and vibration isola- 
tion. The experimental methodology is similar to that 
in the earlier study, so we discuss only key departures 
in the techniques. The results will be analysed using 
the theoretical model developed there, and beyond 
restating some key results, we refer the reader to that 
work for details of the derivation and full interpreta- 
tion. Since major differences emerge in the behaviour 
of the respective epoxies for the two studies, we will 
also mention briefly some experiments performed 
using the single-fibre-composite test as described in 
Netravali et  al. [3]. 

2. Review of theoret ical  concepts and 
key results 

2.1. Statistical model for strength of single 
fibres 

The strength of a single fibre, randomly sampled from 
a yarn and uniformly loaded over a gauge length 10, is 
assumed to follow a Weibull distribution of the form 

F(cy) = 1 - e x p [ -  (cy/CyZo) ; ]  cr >~ 0 (1) 

where ~ and OZo are the Weibull shape and scale 
parameters respectively. Following Watson and Smith 
[4], and Gutans and Tamuzs [5] the scaling of 
strength with gauge length is embodied in the Weibull 
scale parameter through the relationship 

c h = Cylo(l/lo) -~'/; (2) 

where the parameter ~ typically lies between 0 and 1. 
The value ~ = 1 corresponds to the usual, weakest- 
link scaling of Poisson process assumptions on the 
random occurrence of flaws along the fibre. A value 

< 1 is said to reflect random variations in such 
things as diameter and material texture of fibre speci- 
mens sampled from a c r o s s  a yarn, variations which are 
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not revealed when sampling specimens from a l o n g  a 

continuous filament. 
In the model for composite strength, we will have 

interest in the strength of fibre elements of a character- 
istic length 6, called the effective load transfer length. 
Accordingly we denote F~ (~) as the Weibull distribu- 
tion function (Equation 1) for the strength of such a 
fibre element having shape parameter ~ and the scale 
parameter 

~ = ~ o ( ~ / I o )  -~/~ (3) 
Typically ~ is more than two orders of magnitude 
shorter than the typical gauge length of tension tests, 
so that estimation of cy~ by experiment or extrapola- 
tion must be carried out with due care (see Hensten- 
burg and Phoenix [6] and Gulino and Phoenix [7] for 
recent theoretical and experimental developments). 

2.2. Statistical model for microcomposite 
strength 

The model for the strength of the microcomposite of 
length, 1, is often referred to as the chain-of-bundles 
model as shown in Fig. 1. The composite is viewed as 
being partitioned into a chain of m bundles where 
rn = l /6,  and each bundle has n fibre elements of length 
5 where n = 7 in the present case. Within each bundle, 
the load of broken fibres is shifted to nearby neigh- 
bours according to a local load redistribution rule 
given in terms of load concentration factors 
K I < K  2 <  . . -  < K  k<  . . . ,  where the value of the 
subscript generally refers to the number of adjacent 
broken fibres. (For simplicity in the exposition, we 
ignore certain subtleties in the definitions of ~ and the 
Ki, as described in Phoenix e t  al. [1], but will refer to 
these where relevant in the discussion of the experi- 
mental results.) 

We let H,,.,(cy) be the distribution function for the 
strength of the microcomposite, and following 
Phoenix et  al. [1] let 

d'~ = 1 (4) 

d~ = (1/7)[6(7/6) ~ + 18(4/3) ~] (5) 

and 

d; = (1/7) [36(4/3); (5/3); + 12(7/6); (17/10); 

+ 36(7/6)~(6/5); + 12(4/3)~(17/10) ; ]  (6) 

where, in principle, d4 . . . . .  d~ may be calculated but 
are not needed for the present analysis. The key result 
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Figure 1 Idealized model  of the seven-fibre composite  (matrix not  
shown). ~5 fibre element length, m number  of bundles, �9 single fibre 

break). 



i s  

Hrn, 7((y) ~ 1 -- exp[- - m7d'k(CY/cr~) k;] 

for % < ci < %_1 (7) 

and k =  1 , 2 , 3 , . . . , 7 ,  where l > % > c y  2 > c y  3 . . .  
are stress transition points as described shortly. These 
k values are referred to as "critical values" as they 
represent the size of a cluster of breaks at the onset of 
instability and fracture for that particular stress. We 
may rewrite Equation 7 as 

H,~,7(~) --~ 1 -- exp[  - ((Y/(Yk, rn, 7) kr, ] (8) 
where 

%,,,,7 = cy~(m7d~,) 1/(k~) (9) 

The stress transition points, %,  were initially defined 
most naturally as %/K k where v: o = 1, ~q = 4/3, 
~2 = 17/10 . . . .  , K 6 = 7 and 1( 7 = oQ, these having 
been derived from the K k for the dominant failure 
configurations. These points, however, produce small 
discontinuities in the approximation to H~, v(cy) at the 
stress boundary points cy~/~:1, ~/~c2 . . . . .  An approx- 
imation to H,,, 7(cy), which has a smoother appearance 
graphically, is constructed from the inner envelope 
formed by the Weibull distributions of Equation 7, 
where the stress transition points are then determined 
from the intersection points of these distributions and 
are given by 

~k = cY~(d'/d'k+l) I/r" k = 1,2,3 . . . .  (10) 

We use these points in the subsequent analysis. 
In tension testing microcomposite specimens of a 

given volume V = 7m, one of the above Weibflll dis- 
tributions will tend to dominate, being the one which 
defines the median and about which much of the data 
will empirically fit. In past work [8, 9] the k value for 
this Weibull distribution has been referred to as the 
(dominant) critical cluster size k*. We let ~o = k*~ and 
% = %.,,..7, and write 

H,,,7(cr ) ~ 1 -- exp[  -- (cY/%) r'~] (11) 

as the dominant Weibull approximation for the 
strength of the microcomposite. In the case of the 
microcomposites tested in this paper we will find 
k* = 2. Thus, insofar as a single Weibull distribution 
is acceptable for representing the strength of a micro- 
composite, ~ and % are the respective Weibull shape 
and scale parameters. 

2.3. Statistical model for microcomposite 
lifetime in creep rupture 

The key feature in the creep rupture of a micro- 
composite is the time-dependent growth of the effect- 
ive load transfer length, 8, which is caused by viscoelas- 
tic creep of the matrix under shear, or progressive 
debonding in time (discussed in a later section). As in 
the case of short-term strength, the failure process is 
initiated by individual fibre breaks, which cause over- 
loads in neighbouring fibres through the matrix along 
the length 8. Some of these neighbouring fibres may 
fail instantly because of the overloads, but others may 
fail later due to an increase in 5 with time, thus, the 
number  of fibre breaks increases as time goes by, and if 
one of the clusters of fibre breaks reaches a critical size, 

k', catastrophic failure of the microcomposite results. 
In the case of matrix creep, the matrix is modelled as 

a linearly viscoelastic medium having a power-law 
creep function of the form 

Jm(t) = Jo[1 + (t/to)~ t >~ 0 (12) 

where 0 and t o are the creep exponent and time 
constant respectively, and Jo = 1/Gm where G m is the 
elastic shear modulus of the matrix. From Lagoudas 
et al. [10] one may argue that the effective load 
transfer length associated with a cluster of fibre breaks 
grows approximately as 

5(0 ~ 6[1 + (t/t'o)~ 1/2, t >~ 0 (13) 

where 5 is the effective load transfer length at time zero 
(elastic solution), and t~ is a time constant, which is 
close to t o in value. 

For an overstressed fibre element next to i contig- 
uous breaks that have occurred at time zero, we let 
F a (t; ~i) be its distribution function for lifetime, where 
% = Ki~. Then at longer times, as 8(0 grows much 
larger than 8, Phoenix et al. [1] argue that approxim- 
ately 

F~(t; %) = 1 - exp[  - (KicY/cy~)r'(t/t'o) ~~ 

(Ki~/%);(t/t 'o)~~ t > t'o (14) 

where the last approximation holds only when its 
value is less than one. This intermediate result embo- 
dies the increased hazard to an overloaded fibre ele- 
ment as 8 increases in time following Equation 13, and 
illustrates how the various parameters are ultimately 
connected. 

We let Hm,7(t; cy) be the distribution function for 
lifetime of a microcomposite at stress level cy. The 
shape of the lifetime distribution depends on the level 
cy relative to the stress boundary points % of the 
distribution for strength, as given by Equation 10. We 
give only the forms relevant to the experimental re- 
sults discussed later. 

First, we consider the highest stress range above % .  
If ~ > cy 1, then the composite fails instantly on load- 
ing if any fibre fails, but if no fibre fails the composite 
lasts indefinitely (under our assumption that the fibres 
themselves are immune to creep rupture), thus, from 
Equation 7 with k = 1 we have 

Hm,7(t; ~) ~ 1 - exp[  - m7(cy/c%)~], 

t >~ 0 and cI 1 < ~ (15) 

This is a very high stress level which is not chosen in 
practice, and the probability of survival on loading is 
exceedingly small. 

Next we consider the stress range % < c~ < % .  
Here we are in the range k = 2 for strength and the 
distribution function for lifetime turns out to have the 
form 

Hm,7(t; cy) ~ 1 - exp[ - m7qb2(t; ci)] 

t >~0 and c y 2 < c r < ~ l ,  (16) 
where 

f d~(cy/cy~) 2~ 0 < t < t ;  

~b2(t; cy) = ~ d'z(~/cl~)2r,(t/t'o) ~0/2 t' 0 < t < t~ 

[ d'~(cy/c%)~, t f  < t (17) 
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and 
t .# , , , 1/r., .~ = to [ (d j+ l /d j )  (0./%)]-2r./(~0) (18) 

where j = 2. Thus the lifetime distribution has three 
regions. The early region up to the time t ;  is governed 
by the probability of initial failure (strength distribu- 
tion) before the matrix has had sufficient time to creep. 
The second region, t~ < t < t~, corresponds to the 
creep-driven failure of a fibre element next to an 
initially broken element (where the time component 
comes from Equation 14) followed instantly by cata- 
strophic failure. The third region, t ~ < t, is the "even- 
tual failure" region corresponding to the probability 
that at least one fibre fails initially to start the process; 
otherwise the microcomposite lasts forever. 

Lastly we consider the stress range % < o < or2. 
This is in the range k = 3 for strength and the distribu- 
tion function for lifetime turns out to have the form 

H,.,7(t;  0.) ~ 1 - exp[  - m7qb3(t; 0.)], 

t >~ 0 and cy 3 < (3" < o" 2 (19) 

where 

qb3(t; O) = 

and 

d;(cr/cys) ; 0 < t < t* 0,2 

, d'a(0./oa)3;(t/t'd,2) ~~ t * o , z < t < t ~  

d'2(0./~8)2;(t/t'o) ~~ t~ < t < t~ 

(0./~)~, t~ < t 
(20) 

t~, 2 = t ; [ F ( 1  -t- ~O)/ r (1  + ~0/2)2] 1/(a0), (21) 

and where t~ is given by Equation 18, typically 
t~, 2 ~ t~. Thus the lifetime distribution has four re- 
gions. The early region up to the time t*  2 is governed 
by the probability of initial failure (from the strength 
distribution) before the matrix has had sufficient time 
to creep. The second region, to,2 < t < t~', corres- 
ponds to the creep-driven failure of a fibre element 
next to an initially broken element, followed by creep- 
driven failure of a second fibre element, and followed 
by catastrophic failure. The third region tz ~ < t < t~, 
corresponds to the creep-driven failure of a fibre 
element next to an initially broken element followed 
by catastrophic failure. The fourth region, t~ < t, is 
the "eventual failure" region corresponding to the 
probability that at least on fibre fails initially; other- 
wise the microcomposite lasts forever. 

In the lifetime experiments on microcomposite spe- 
cimens of a given volume V = 7m and loaded at a 
given stress level 0., the lifetime distribution will tend 
to be an approximate Weibull distribution over much 
of the time range. In the highest practical stress range 
0.2 < 0. < 0.1 this Weibull distribution is determined 
by middle component of Equation 17, and is given by 

where 

and 

Hm,7(t; cy) ~ 1 - exp[  - (t/tc(0.))~], t >~ 0 (22) 

to(0.) = t'o(0./%,m, 7) -- O* (23) 

[3 = ~0/2 (24) 

9* = 2p (25) 

P = 2~/(~0) (26) 

Actually this distribution will dominate for c; near the 
lower part of its range where the probability of failure 
on loading is least. 

In the upper part of the next lower stress range, 
0.3 < 0. < 0.2, the above Weibull distribution (Equ- 
ations 22 to 26) will continue to dominate at longer 
times, but a second Weibull distribution will begin to 
emerge in the lower tail. This Weibul! distribution is 
determined by the second component of Equation 20, 
and is given by Equation 22 where 

to(0.) = t ~ , 2 ( 0 . / % , m , 7 ) -  0* 

and 

(27) 

[3 = s0 (28) 

9* = 39/2 (29) 

This distribution will increasingly dominate as c; takes 
values near the lower part of this stress range. 

As the stress range is lowered still further (which 
would be practically necessary for larger composites) 
an approximate Weibull distribution would still dom- 
inate, though [3 would continue to increase as ~Ok'/2 
and P* would decrease towards the limit p, as the 
critical cluster size k' increases. Note that P* rep- 
resents the exponent of the power-law relationship 
between lifetime and stress level, being proportional to 
~, the Weibull shape parameter for fibre strength and 
inversely proportional to the creep exponent 0 for the 
matrix and the factor a for the length effect in fibre 
strength. A smaller value of ~ clearly reduces the 
susceptibility of overloaded fibres to failure due to 
matrix creep. 

3. Experimental procedure 
3.1. Materials used 
The fibres used for this experiment were IM6 carbon 
fibres supplied by Hercules Inc., a high-performance, 
intermediate modulus, polyacrilonitrile-based fibre 
suggested for use in prepregging and filament winding. 
The fibres are approximately 5 lam in diameter. The 
fibre had been surface treated to improve its inter- 
laminar shear strength, and was supplied as a 12 000 
filament tow with sizing. 

The epoxy resin used was Dow DER 332 mixed 
with Texaco Jeffamine T403 curing agent. This epoxy 
assured uniform performance, had a relatively low 
viscosity (4 to 6 Pa sec) and had a clear colour because 
of its high purity and lack of polymer fractions. Its 
epoxide equivalent weight ranged from 172 to 176 and 
its chemical reactivity was low. The T403 curing agent, 
which is a primary triamine with six reactive hydro- 
gens, gives a long potting life to the resin (advantage- 
ous for filament winding) thus facilitating the dipping 
process. The epoxy and curing agent were mixed in 
proportions of 44 parts to 100 parts by weight of 
curing agent and epoxy respectively. 

3.2. Procedure for extracting and tension 
testing of single fibres 

Single fibres were extracted from the IM6 tow to 
prepare specimens for tension tests at gauge lengths of 
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10, 30 and 100 mm in sample sizes of about 50. To 
extract these filaments, a section of tow measuring 
300 mm was cut from the IM6 spool and submerged in 
a jar of dichloromethane for 1 h to remove the sizing. 
This sizing had held the fibres in a tightly packed 
bundle of 12000, and made it impossible to extract 
fibres without breaking them. The tow was sub- 
sequently placed in a tray filled with distilled water 
and individual filaments were carefully pulled from the 
water and placed on a platform covered with Teflon 
coated paper. 

To determine the linear density (mass per unit 
length), and thus, the cross-sectional area of each 
300 mm filament, we removed about 60 mm from one 
end and placed it in an electrostatically driven vibro- 
scope built in our laboratory [11]. The cross-sectional 
area was calculated assuming a mass density of 
1 . 7 3  g c m  - 3. 

For tension testing the single fibre specimens, the 
tabbing method developed by Wagner et al. [12] was 
used to hold each fibre. The adhesive used was 910 Fs- 
Gold adhesive, which is a quick-setting methyl cyan- 
oacrylate produced by the Permabond Corporation. 
From each remaining 240 mm filament section, speci- 
mens with gauge lengths of 10, 30 and 100 mm, re- 
spectively, were constructed in succession along the 
fibre, leaving spaces sufficient for tabbing and paying 
special attention to alignment. Tension tests were 
performed on an Instron model 1130 machine at a 
strain rate of 0.025 mm-1 and paying special attention 
to alignment. Conditions were standard ambient 
conditions of 21 ~ and 65% relative humidity. 

3.3. Procedure for fabricating seven-fibre 
microcomposites 

For the microcomposites single filaments were first 
extracted from a 400 mm section of IM6 tow and were 
measured for their cross-sectional area using the same 
methods as described above for the tension tests. To 
achieve uniformity in cross-sectional area, however, 
only those filaments with a cross-sectional area within 
5% of the mean were used to construct the micro- 
composites, and the rest were discarded. 

To make the microcomposites, seven filaments were 
carefully gathered into a bundle. The most important 
and difficult aspect of this process was to draw the 
seven fibres into a bundle without the fibres twisting 
together at any point, thus precluding a hexagonally- 
shaped microcomposite. By careful alignment of the 
fibres and drawing the bundle through a tray of dis- 
tilled water, the surface tension brought the fibres 
together uniformly into a bundle. 

These seven-fibre bundles were mounted on dipping 
frames, one of which is illustrated in Fig. 2. The frames 
and dipping system were the same as those used by 
Phoenix et al. [1], and each frame had the capacity to 
mount six bundles at a time and hold them during the 
dipping process into the epoxy system. One end was 
glued to the top of the frame by extra fast-setting 
epoxy while a light weight (about 0.2 g) was hung at 
the other end. After the glue at the top of the frame 

Main frame 

.Top anchor 

Epoxy 
Teflon TM guide 

Fibre bundle 

Centre support 
(Teflon TM) 

Bottom anchor 

Bottom guide 
(Teflon TM) 

( ~  Weight 

Figure 2 Dipping frame for seven-fibre bundles. 

hardened, the other end was also glued under tension 
using the light weight (see Fig. 2). 

To clean the fibres, the dipping frames holding the 
bundles were immersed in a cylindrical bath filled with 
acetone for 5 min to remove oil and other contam- 
inants. After preparing the epoxy, a Pyrex bath cylin- 
der was warmed up to 50 ~ just before pouring epoxy 
into it so that the temperature of the epoxy would not 
decrease during the dipping process. The frame with 
bundles was lowered into the epoxy bath at 
70 mm min-  1 and lifted out at 35 mm rain- 1, using 
the mechanism shown in Fig. 3 whereby two frames 
could be dipped in one run. These dipping conditions 
were determined by trial-and-error to minimize the 
formation of epoxy beads on the microcomposites. 
The surface tension of the epoxy tended to pull the 
fibres into a tight bundle with an approximately hex- 
ogonal configuration. By this process it was possible 
to produce 48 microcomposite specimens from each 
run (four per bundle) each with a gauge length of 
30 mm. To have a sufficient number of specimens 
(including spares) five runs were made. 
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Variable speed 

l iar 

frame 

~oxy 

Figure 3 Dipping tower. 

l ee  

After dipping, the flame and long microcomposite 
specimens were removed from the dipping tower and 
laid horizontally on a Teflon covered board to cure 
initially at room temperature for 48 h. Subsequently 
they were placed in an oven for a second cure cycle at 
120~ for l h ,  and then at 170~ for l h ,  as re- 
commended for this epoxy-hardener system. Finally, 
the long specimens were placed on a specially con- 
structed tabbing board, and subdivided into four 
microcomposite specimens. Each specimen had a 
30 mm gauge length and had paper tabs fixed with a 
fast-setting epoxy adhesive. These microcomposites 
specimens were randomly allocated as specimens for 
the tension tests and the creep-rupture tests at three 
different load levels. 

To ensure precise alignment of the microcomposites 
during testing, threads about 20 mm in length and 
with end loops were aligned and glued to the ends of 
each specimen using Duco cement. Loading could 
then be applied to the loops of the threads. The 
alignment was confirmed by hanging a light weight on 
each specimen. 

0.025 min-1). A Weibull distribution was fitted to the 
data as will be discussed later in more detail. 

The remaining 132 specimens were used in the 
creep-rupture experiments, with 44 selected at random 
for each load level. The basic rack was a modified 
version of the equipment used by Phoenix et  al. [1]. 
The applied load levels were 95%, 88% and 83% of 
the value of the overall Weibull scale parameter for the 
short term strength, and each load level was tested 
separately. At each load level, the weights used were 
identical for all specimens because our fibre screening 
procedure produced a coefficient of variation of 
sample cross-sectional area of only about 1.7%, which 
was much smaller than that of the failure load. 

In earlier experiments, Phoenix et al. [1] found that 
external shocks wore detrimental to specimen life so 
that isolation of vibration was essential. In our ex- 
periments, a different apparatus from the one used in 
their experiments was set up with great effort to elim- 
inate external vibration (Fig. 4). This apparatus was 
actually a modified version of system involving a 
massive marble table used in the creep-rupture ex- 
periments on carbon single fibres by Farquhar et  al. 

[2], In the original apparatus, the platform, on which 
weights would drop, rested on the same table as the 
main rack from which specimens were hung. The mass 
of the weights for the present creep-rupture test were, 
however more than 70 g, thus, when a specimen broke, 
a significant vibration would be generated, possibly 
resulting in another break. Therefore, the platform 
was placed on the floor while the main rack was 
mounted on the marble table, which was supported 
by four low pressure pneumatic springs as shown in 
Fig. 4. The main rack and marble table weighed ap- 
proximately 700 kg and the resonant frequency of the 
system was calculated to be 2 Hz, so the thread length 
for the specimens was chosen to avoid this resonance 
condition. The main rack was shielded from dust and 
air flow in the room by an acrylic cover. 

Acrvlic cover 

3.4. Procedures for testing of 
microcomposites 

Forty-eight microcomposite specimens were tension 
tested in order to determine the distribution for short- 
term strength. The conditions were the same as used 
for the single fibres (21 ~ 65% RH and strain rate of 
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Figure 4 Creep-rupture test apparatus. 



Figure 5 Flag system to indicate starting time. 

In (stress {MPa)} 
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Figure 6 Single fibre strengths on Weibull probability coordinates 
at gauge lengths ( x ) 10ram, ( + ) 30 mrn, and (*) 100 ram. 

T A B L E  I Weibull statistics for tensile strength of single IM-6 
fibres 

Gauge length Number of Shape Scale parameter 
(ram) specimens parameter (MPa) 

10 39 6.78 6234 
30 48 6.73 5277 

100 47 5.15 4679 

Another modification in the present experiments 
was a failure time recording system using two video 
camcorders. Unlike the cantilevered, electrical micro- 
switch system used by Phoenix et al. [1], the camcor- 
der system was reliable and completely free of vibra- 
tion problems. In order to determine exactly when 
each weight left the platform, thus loading the associ- 
ated specimen, a thin strip of paper with a coloured 
"flag" was placed under each weight as shown in 
Fig. 5. One end was placed directly underneath the 
weight and the other end was attached to the platform 
by a self-sticking label so that the thin strip of paper 
was elastically arched as shown in Fig. 5. This strip of 
paper flattened when the weight left the platform, so 
the exact starting time of loading could be determined 
easily and accurately from the camcorder record. 

4. Exper imenta l  results and 
in te rpre ta t ion  

4.1. Stat ist ics for f ibre strength 
Fig. 6 shows plots of the tension test results for the 
single fibres on Weibull coordinates. Table I presents 
the maximum likelihood estimates (MLE) of the 
Weibull shape and scale parameters for failure stress 
for the three gauge lengths considered. For these 
specimens, the mean and coefficient of variation of the 
filament cross-sectional area were respectively 
2.53 x 10 .5 mm 2 and 8.2%. An interesting feature in 
the calculations was that the coefficient of variation of 
filament failure stress was actually slightly larger (by 5 
to 20%) than that for failure load at the two shortest 
gauge lengths, which is opposite to what one might 
anticipate. This suggests a complex relationship be- 
tween filament diameter and failure load whereby 

larger filaments may actually be weaker. Phenomena 
of this sort were recently studied for a variety of fibres 
by Wagner [13]. 

In the fibre strength model of Equations 1 to 3, the 
correlation factor, ~, is assumed to be constant, but 
the results of the tension tests on single fibres suggest 
that ~ may vary slightly with the gauge length. Fig. 7 
shows a log log plot of the Weibull scale parameter 
for strength against gauge length, including 95% con- 
fidence intervals. Such plots are supposed to form a 
straight line with a slope of - 1/~ in the standard 
weakest link model, where ~ = 1. However, Fig. 7 
suggests that the slope tends to level off slightly as the 
gauge length increases, suggesting an increase in ~. On 
the other hand, Table I shows that ~ becomes smaller 
at longer gauge lengths than shorter ones. Taking 
these features together, it is suggested that ~ varies 
slightly with the gauge length and takes slightly smal- 
ler values than 1 at the longest gauge lengths. Similar 
tendencies have been observed for other carbon fibres 
such as Hercules AS4 and Union Carbide T300 in 
experiments conducted in our laboratory. Phoenix 
et  al. [1] also saw the same trend in IM6 fibres without 
sizing. Specifically, ~ for IM6 is close to 1 at less than a 
30 mm gauge length (of interest to the models here) 
but may be about 0.85 at a 100 mm gauge length. 

As further verification of the applicability of the 
weakest-link model, a "master curve", which scales the 
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data for different gauge lengths into one gauge length, 
was constructed. In the weakest-link setting, the pro- 
bability of failure, Fh(~), at a gauge length of 11, is 
scaled to another length l o as 

F,o(O) = 1 - [1 - Fh(cy)] R (30) 

where R = lo/l ~ and Fzo(CY ) is the scaled probability. 
Such a scaling is easily obtained on Weibull coordin- 
ates since Fh(~  ) is shifted vertically by the distance 
ln(R) on the ln[ - ln(1 - F)] scale. The master curve 
constructed from the single fibre data at the three 
gauge lengths scaled to a gauge length of 10 mm, is 
shown in Fig. 8. This curve is remarkably smooth and 
straight (apart from the tail variations which are to be 
expected). A Weibull distribution, with the respective 
shape and scale parameters of 6.78 and 6234 MPa is 
also shown. Taking all these aspects into considera- 
tion, the Weibull weakest-link model with ~ = 1 is 
quite appropriate and valid for characterizing the fibre 
strength at these gauge lengths. 

The gauge length, 6, of interest in the model will be 
less than 10 mm by a factor of about 20. At this length, 
the Weibull scale parameter for fibre strength, o~, is 
predicted to be about 9500 MPa using Equation 3. 
From Fig. 8, we see that this value is only moderately 
larger than the largest fibre strength observed 
(8100 MPa), and the shape of the upper tail of the 
master curve suggests that such an extrapolation is 
reasonable. Recently Gulino and Phoenix [7] were 
able to study the strength of IM6 fibres from a differ- 
ent spool at this length scale using special techniques, 
and observed strengths comparable to those predicted 
here. However, anomalous fibre to fibre variations 
across a yarn were also suggested in that study. 

Compared to the results of Phoenix et  al. [1], the 
values of both the Weibull scale and shape parameters 
at the gauge lengths tested were considerably larger in 
our experiments. For  example, the scale and shape 
parameters for a 10 mm gauge length were 5283 MPa 
and 5.4 respectively in their experiments as compared 
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oh0 = 6234 M P a  wi th  ~ = 1. 

to 6234 MPa and 6.78 here. Also the largest strength 
observed in their experiments at a 10 mm gauge length 
was about 7000 MPa, whereas their value for cy~ was 
about 11 500 MPa, which is substantially larger than 
in our case. Thus the extrapolation of fibre strength 
required in the microcomposite model was much more 
severe in their case. 

Substantial variations in carbon fibre strength from 
spool to spool (and even through a spool) are to be 
expected due to slight variations in processing condi- 
tions. Thus, in micromechanical modelling and experi- 
mentation as was carried out here, it is necessary to 
characterize the fibre through extensive tension tests 
at various gauge lengths. 

4.2. Distributions for strength of 
microcomposites 

The strength results for the 45 microcomposite speci- 
mens, tension tested at a gauge length of 30 ram, are 
plotted on Weibull coordinates on Fig. 9. Also shown 
is a Weibull distribution fitted to the data with MLE 
values of 13.9 and 4941 MPa for the shape and scale 
parameters respectively. According to the theoretical 
arguments given earlier in connection with Equation 
11, the microcomposite strength should approxim- 
ately follow a Weibull distribution, which should 
dominate over a fairly broad range of load. The effect- 
ive Weibull shape parameter ~c should be k*~ for some 
integer, k*, called the critical cluster size. Comparing 
the value ~c = 13.9 above with ~ = 6.8 for the fibre 
(used henceforth in model calculations) we have 
k* ~ 2 almost exactly. 

While the MLE fit in Fig. 9 is excellent in the upper 
tail, the slope appears to be steeper in the lower tail. 
Such an effect was indeed predicted in the discussion 
associated with Equations 8 to 10. For  lower failure 
stresses, a Weibull distribution with shape parameter 
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34 is predicted to fit the actual data. At the same time 
the extreme upper tail is predicted to follow a Weibull 
distribution with shape parameter  4, which in fact is 
the distribution function for the weakest fibre in 
the bundle (or all seven fibres connected end to end). 
Fig. 10 shows a manual  fit of these three Weibull 
distributions to the strength data and the respective 
scale and shale parameter  values are given in Table II 
along with the MLE values of Fig. 9. 

While only 45 specimens were tension tested in the 
present case, the character of the data and plots on 
Fig. 10 is strikingly similar to that obtained by 

TAB LE I I Weibull statistics for microcomp0site strength 

k Shape parameter Scale parameter 
(MPa) 

Overall MLE 13.9 4941 
1 6.8 3924 
2 13.6 4900 
3 20.4 4730 

Phoenix et al. [-1] who tested 126 specimens. In both 
cases, the plots clearly consist of two segments and 
follow the fitted Weibull distribution very well. These 
results support  our theory that the critical cluster size 
actually varies with the stress level. Also, the scale 
parameter  values in Table II  should then correspond 
to O ' 1 , m ,  7~ O ' 2 , m ,  7 a n d  o ' 3 , r a ,  7 .  

The Weibull scale parameter  for the microcompo- 
sites at a 30 mm gauge length was 4971 MPa,  some- 
what smaller than that of the single fibres which was 
5277 M P a  at this length. In contrast, the correspond- 
ing values in Phoenix et al. [1] were 5154 MPa  as 
opposed to 5283 M P a  but at a smaller gauge length of 
10 mm. 

Using the above results, the effective load transfer 
length, 8, and the scale parameter,  oa, can now be 
calculated. From Equations 2, 3 and 9, we may write 
Oh,m, 7 in terms of ~ ,  d~,, 4 and l, the gauge length 
30 mm, as 

crk,,,,7 = cyl(7d~, ) 1/(k;)(i/8)(k- l)/(k~) (31) 
whence 

8 = l(7d~)-l/(k-1)(Ot/CYk,m, 7) k;/(k- 1) (32) 

where an intermediate step is 

c r a =  c;~(I/6) t/~ (33) 

Table III  shows the results of the calculation of d},, 6 
and era for both k = 2 and 3. Clearly 8 does not have 
one value but is slightly larger for k = 3 than for k = 2. 
This phenomenon was observed also by Phoenix et al. 
[-1] where t he  ratio of the 8 values was about  1.66 
there as compared to the present ratio, 1.42, which 
represents slightly better agreement.  They explained 
the difference in terms of local geometric effects, dy- 
namic overload effects, debonding effects, and over- 
simplified probability calculations for k = 3 that 
ignore certain less likely failure sequences. These dif- 
ferences in 8 also mean that Equation 10 will be less 
accurate in predicting the stress transition points for 
the Weibull distributions on Fig. 10. 

A most  striking feature is the fact that the 6 values 
here are three to four times the values in Phoenix et al. 
[1], where a different epoxy was used. Taking 8 = 0.57 
and I = 30 m m  we calculate the number  of bundles, m, 
in the microcomposite to be 52, so the composite 
volume is V = 7m = 368 elements as compared to 467 
elements in their study. We will return later to possible 
explanations for this important  difference in 5. 

It is interesting to calculate the number  of micro- 
composite test specimens that would be required to 
experimentally reveal the transition between the k = 1 
and k = 2 Weibull distributions on Fig. 10, and pro- 
duce data in the k = 1 region. From Equation 10 we 
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T A B L E  I I I  Parameters for Weibull envelope for microcompos- 
ite strength 

k d~ 

Effective load Scale parameter 
transfer length for length 8 
6 % 

(ram) (MPa) 

1 1 - -  

2 20.2 0.57 9499 
3 1753 0.81 9013 

calculate the stress transition point as 6075 MPa, 
corresponding to the survival probability 
exp[  - (6075/3924) 6'78] = 7 • 10 -9 ,  thus, about one 
billion tests would be necessary to obtain a few points 
falling in the k = 1 region! 

4.3. Lifetime in creep rupture of 
microcomposites 

The stress levels chosen for the creep-rupture ex- 
periments were 95%, 88% and 83% of the MLE 
Weibull scale parameter value (4941 MPa) for micro- 
composite strength, as illustrated on Fig. 9. Note that 
one stress level is in the k = 2 region, one is in the 
k = 3 region and one is just below the stress transition 
point between the two regions�9 

Plots of the lifetime results, on Weibull probability 
coordinates, are shown in Figs. 11, 12 and 13 for the 
three stress levels, respectively. The Weibull scale and 
shape parameter values for the lifetime at each stress 
level were estimated by the MLE method for censored 
samples given by Cohen [14]. Tables IV and V present 
these parameter estimates as well as other important 
information about the creep-rupture experiments. In 
particular, we show for the three respective data sets 
the actual and predicted numbers of initial failures 
(failures on loading), the numbers of creep-rupture 
failures, the numbers of censored samples (survivors at 
the termination of the test) and the test lengths. 

With respect to the generation of this data a few 
comments are in order. During the entire time of 
loading, the apparatus was able to isolate the speci- 
mens completely from vibration, and no failures re- 
lated to hazardous causes such as door  slams, air flow 
and other external shocks occurred. For  example, 
what appear to-be clusters of failure times near 10 000 
seconds on Figs 12 and 13, actually are not and rep- 
resent failures typically several minutes apart. 

Although the theoretical model for the Weibull 
lifetime distribution assumes an ideal step loading, the 
actual loading history was approximately a ramp 
loading with a steep gradient. However, the time 
interval between the beginning of the loading and full 
loading was calculated to be less than a half a second. 
The tightness of the paper strip placed underneath 
each loading weight was adjusted so that it would not 
move until the applied load to the specimen reached 
about 99% of the load to be applied. Therefore, the 
starting time, t = 0, could be defined as the moment 
when the paper strip moved. 

The starting time of loading of each specimen was 
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measured precisely by the paper strip indicator and a 
video camcorder, which showed that there was actu- 
ally a time difference of about 10 seconds between the 
full-loading time of the first and last specimens due to 
varying lengths of the alignment threads. Although 
not all the specimens were loaded simultaneously, the 
recording system worked so well that we could easily 
identify the exact starting time for each specimen. This 
success was very important because interesting beha- 
viour of the microcomposite lifetime was observed in 
the first 60 seconds as will be discussed shortly. These 
innovations corrected the major experimental diffi- 
culties encountered earlier by Phoenix et  al. [1]. 
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T A B L E  IV Overall Weibull statistics for the lifetime of micro- 
composites 

Stress Actual Sample MLE Shape MLE Scale 
level stress size parameter parameter  
(%) (MPa) (sec) 

95 4694 43 0.175 127 
88 4348 43 0.201 (0.18)* 9475 (9450)* 
83 4101 44 0.195 (0.18)* 70477 (70450)* 

* Estimated from dominant  Weibull region of upper tail (k' = 2) 

T A B L E  V Various quantities associated with creep-rupture tests 

Stress Initial Creep-rupture Censored Test 
level failures failures samples length 
(%) (sec) 

95 18 (18)* 24 1 6.0 x 105 
(7 days) 

88 7 (7)* 34 2 2.5 x 106 
(29 days) 

83 3 (2)* 37 4 5.0 x 106 
(58 days) 

* Predicted from envelope fit to tension tests (Fig. 11) 

To interpret the creep-rupture data we refer back to 
the theoretical results given by Equations 16 to 29. 
For  the 95% stress level falling in.the k = 2 region of 
microcomposite strength (see Fig. 9). Equations 16 to 
l 8 indicate that there should be three time regions of 
importance with distinct features. For  the 88% and 
83% stress levels falling in the k = 3 region of 
strength, there should be four distinct time regions as 
indicated by Equations 19 to 21. Actually the ex- 
periments were not run sufficiently long to observe the 
last time region in each case, even at the highest stress 
level. 

As mentioned in Section 2.3, the lifetime distribu- 
tion is predicted to be a Weibull distribution over 
much of the time range as given by Equation 22 with 
parameters given by Equations 23 to 29 depending on 
the load level. It turns out that for all three load levels 
here, Equations 23 to 26 apply for the longer times. 
From the Weibull shape parameter values of Table IV 
(which are corrected as discussed shortly) we estimate 
13 ~ 0.18. Earlier we had ~ ~ 1 so that the power-law 
exponent for matrix creep is estimated 0 ~ 0.36. 

Turning now to more detailed features of the vari- 
ous distributions, we consider the initial failures and 
the first time region for each load level. All the initial 
failures were observed to have occurred just before the 
time of full loading, that is, the paper slip for a sample 
did not move as' the specimen failed. The earliest 
creep-rupture failure was at about 5 seconds. Thus 
initial failures were clearly distinguished from creep- 
rupture failures. 

The numbers of initial failures at each stress level 
were almost exactly the same as predicted from the 
short term strength data as shown in Table V. In the 
experiments, 42% of the specimens (18 out of 43) were 
initial failures at the 95% stress level, 16% (7 out of 43) 
at the 88% stress level and 7% (3 out of 44) at the 83% 
stress level. On the other hand, the predicted percent- 
ages of initial failures were 43, 16 and 5%, respectively 
using the Weibull envelope of Fig. 10. 

The upper limit of the first (earliest) time region is t~ 
for the 95% stress level and t~, a of Equation 21 for the 
88% and 83% stress levels. From the definitions of the 
first time regions in Equations 17 and 20 respectively, 
t ;  and t* o, 2 can be estimated as the intersection points 
between the probability of initial failures and the best 
fits to the empirical plots for the lower tail regions on 
Figs. 11 to 13 respectively. Those points were estim- 
ated to be about t~ = 3.0 sec. for the 95% stress level 
and t~,z = 5.5 and 2.5 sec. for the 88% and 83% 
stress levels, respectively. Using the estimates 0 ~ 0.36 
and ~ ~ 1 in Equation 21 we calculate t*o,2 ~ 1.14 t o. 
Given the rough accuracy of these calculations, the 
results are fairly consistent. These values are slightly 
larger than those obtained by Phoenix et al. [1]. 

Next, we consider the second time region for the 
88% and 83% stress levels which is t*,z < t < tz ~ from 
the second component of Equation 20. In this region 
the Weibull distribution Equation 22 actually applies 
with parameters given by Equations 26 to 29. We 
estimate respective tc(cy) values of 550 and 2300 sec for 
the two lower tail regions on Figs 12 and 13 respect- 
ively. Theoretically, the upper limit for this time region 
is t~ of Equation 18 which for 0 .~ 0.36, ct .~ 1.0, and 

~ 6.8 yields t~ = 16 and 118 sec, respectively, for the 
88% and 83% stress levels. From the results of the 
experiments, however, we estimate values of about 45 
and 120 sec respectively, though again the resolution 
is quite rough. Overall the data appear to support the 
downward bending of the lower tail relative to the rest 
of the distribution as predicted by the theory. In the 
micromechanics of the failure process discussed 
earlier, this behaviour is associated with the 88% and 
83% stress levels being in the k = 3 region of the 
strength distribution; such behaviour is not predicted 
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for the highest 95% stress level and indeed is not 
observed. In the only vibration-free data set of 
Phoenix et al. [1], which was at the 87.5% stress level, 
these same features were both predicted and observed. 

Next, we consider the third and dominant time 
region for the 83% and 88% load levels given by the 
third component of Equation 20; this micromechani- 
cal situation also corresponds to the second and domi- 
nant time region for the 95% stress level as described 
by the second component of Equation 17. In all cases 
the dominant Weibull distribution is Equation 22 with 
parameters given by Equations 23 to 26. The respect- 
ive estimates for the Weibull scale and shape para- 
meters for lifetime, L(cy) and [3, as fitted manually, are 
given in Table IV. These values differ from the pre- 
vious MLE values because of the removed influence of 
the lower tail in the present case. (The revised values 
are used in all calculations henceforth.) Estimates for 
the various parameters are ~ ~ 1.0, [3 ~ 0.18, ~ ~ 6.8, 
0 = 0.36, p ~ 37 and 9* ~ 74. (We consider CY2.m, 7 
momentarily.) 

To estimate the power-law exponent, 9", there are 
three approaches. The first approach, which we have 
applied already, is to determine 9" from the basic 
parameters ~, 0, and ~ through Equations 25 and 26; 
that is 9" = 4~/(=0). The second approach is to plot, 
on log-log coordinates, the Weibull scale parameters 
for lifetime, tr against stress level for the dominant 
time regions. According to Equation 23, the slope 
should be - P*- The third approach is to use Equ- 
ations 23 and 27 directly whereby 

p* - log[t~(c~)/ t 'o]/ logro/cs2, , , ,7  ] (34) 

applies for the Weibull dominant time regions and 

9* = - log[tc(CY)/t*,2]/log[c~/~3,m,V] (35) 

for the Weibull lower tails with all parameters already 
calculated including the strength parameters CYz,,,,v 
and or3,,, ' 7 from Table II. 

Fig. 14 shows a plot, on log-log coordinates, of the 

4800 

4400 

4000 

tn (tifetime (s)) 
4 6 8 10 lZ 

I I L I I 

+ 

*= 55 + ~  p ~ =  

8.5 

8.4 

F 

8.3 

i I r I , l , E , 

10 1000 100 000 
Lifetime (s) 
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1966 

applied stress, c~, against scale parameter, tr for the 
dominant time region (k' = 2). From the slope of this 
plot we estimate 9" = 55. On the other hand, using 
Equation 34 we calculate the values 79, 64, and 54 for 
9* for the stress levels 95%, 88% and 83% respect- 
ively. 

Thus, by the three approaches for estimating p* we 
have obtained estimates ranging from 79 down to 54. 
Given the errors inherent in the estimates of the 
various parameters due to such things as limited 
sample sizes in both the strength and lifetime, such 
variation perhaps may be expected. Nevertheless, the 
cause of these low values appears to stand out, on 
Fig. 14, as an unexpectedly small value for tc(c~) at the 
lowest 83% stress level; in fact, L(o)  appears to in- 
crease more slowly with decreasing stress than the 
model would predict on the basis of the values of the 
other model parameters. 

5.  D i s c u s s i o n  
5.1. Inconsistencies in values for model 

parameters 
We now pursue possible explanations for the lower 
than anticipated value of p* from Fig. 14 caused by 
the value of tc(cr) at the 83% stress level being some- 
what less than anticipated. It is easy to see from Fig. 14 
for the 83% stress level, that a shift in the value of the 
scale parameter, L(cr), to the right by a factor of about 
f i ve  would align the points for all stress levels to yield 
p* -- 64, whereas a shift by a factor of ten would yield 
a best fit value of P* = 73, which would be consistent 
with our first approach for estimating 9" based on 
Equation 26. Turning to Fig. 13, a deviation in t~(o) 
by a factor of five could conceivably be explained on 
the basis of the natural, random variation in the data, 
but a deviation by a factor of ten requires another 
explanation. 

It is interesting to consider the increase in the value 
of 8(0 for the overloaded fibre that would be neces- 
sary for the occurrence of such a reduced value of L(~) 
at the 83% load level. From the scaling factors in 
Equations 13, 14 and 17 (particularly the dependence 
~ ( t )  OC (t~)) - 0/2) one can see that changes in the time 
scale by the respective factors of five and ten affect 8(0 
at long times by the factors 1.34 and 1.51, respectively. 
This must be appreciated in terms of the nominal 
value of the ratio 8(0/8 ~ 6.3 at t = L(o)  
= 70477 sec, assuming 0 = 0.36 and t~ = 2.8 sec. 

Since 8 - -0 .57  mm from the results on strength we 
have 8(t) ~ 3.6 mm at t = 70 477 sec. The above fac- 
tors of 1.34 and 1.51 increase 8(0 to 4.8 and 5.4 mm, 
respectively. Note that corresponding values of the 
geometric overload factor, 8", of Phoenix et al. [1] are 
probably two to three times larger, thus approaching 
half the specimen length of 30 mm. These values rep- 
resent large increases in the effective overload length 
with time far beyond what one might expect to model 
accurately on the basis of linear viscoelasticity. In- 
creases of this magnitude must involve considerable, 
time-dependent debonding in addition to matrix 
creep, evidence for which we discuss shortly. Thus, one 



must anticipate that non-linear deformation processes 
are involved in determining 5(0. 

Phoenix et al. [11 mention some implications of a 
non-linear model for matrix creep as developed by 
Mason [151. The matrix material follows a constitu- 
tive law with memory, which under a constant shear 
stress t o has the shear strain 

7(t) = B'c~t o' (36) 

where B, co and 0' are positive constants. For  the 
overload length 5(t) we have 

5(t) = D t  ~176 + 1)s - l)/(r + 1) (37) 

where D is a constant which lumps many model 
parameters, and we are interested in the implications 
for long times where 8(t) ~> 5. Reworking Equations 
14 and 17, the exponent on stress in the second com- 
ponent of Equation 17 is now 2~ + (co - i)/(~o + 1), 
and we take 0 = 0'/(o~ + 1). Thus p* is modified to 

p** = [4~ + (co - 1)/(c0 + 1)1/~0 (38) 

Taking c~ = 1, ~ = 6.8 and 0 = 0.36, we find that 9** 
= 64 and 55 require the negative values (o = - 0.29 

and -0 . 56 ,  respectively. Unfortunately a negative 
value for co is difficult to rationalize on physical 
grounds since typical non-linearities at high stress 
levels produce large positive values of to. Thus, a non- 
linear law of this form does not appear to explain the 
results. 

The most likely explanation for the above discre- 
pancy is statistical variation in the growth of 5(t) from 
specimen to specimen. This variability would result 
from geometric variation in specimen cross-sectional 
shape and fibre spacings, or variability connected to 
the position of the initial fibre break (central or peri- 
pheral), or variability in the adhesion of the fibre to the 
matrix. Such variability would have to be in addition 
to any initial variations in 5 for short term strength in 
order not to be reflected already in the strength re- 
sults. (Initial variations in 8 must have been minor or 
they would have decreased the slope of the Weibull 
line on Fig. 10 for k = 2 relative to the respective 
exponents 2~.) 

From Equations 25 and 26, 9* = 55 would require 
the value 0 = 0.49 rather than the value 0.36 which we 
calculated from Equation 24 using the observed value 
of 13 = 0.18. On the other hand, by Equation 24, 
0 = 0.49 would correspond to 13 = 0.24 rather than the 
observed 0.18. Thus this variability in 5(0 would need 
to depress the value of 13 by about 25%, which corres- 
ponds to an increase in the coefficient of variation of 
lifetime by about 35%, an effect which we believe is 
very plausible. Modification of the model to reflect 
such effects is beyond the scope of the present paper, 
but a crude calculation is possible to estimate the 
order of the variability required. As we have already 
seen, relatively modest changes in 5(0 have a large 
effect on lifetimes. The coefficient of variation of life- 
time is of the order of 400% for 13 = 0.24, and the 
component introduced by variability in 8(t) must be 
slightly less, perhaps 300% (variabilities tend to add 
following Pythagoras' theorem) to obtain about 550% 
corresponding to 13 = 0.18, as was observed. Since 

5(t) oct  0/2, small deviations in 5(t) are of the magni- 
tude 0/2 times those of t or about 1/4. Thus a coeffi- 
cient of variation of about 75 % in 5(t)would probably 
be necessary, a value which is plausible in view of our 
observations from micrographs of fracture surfaces as 
we discuss shortly. 

5.2. Models for interface debonding as the 
dominant mechanism for creep rupture 

Recently Netravali et al. [31 have used the single fibre- 
composite-test to demonstrate extensive debonding 
along the interface of a system with Hercules IM6 
fibres and Dow 331 epoxy with D EH  26 curing agent, 
similar to that used in Phoenix et al. [11. Also, using a 
three-fibre composite system of one IM6 fibre between 
two larger glass fibres in the same epoxy, Gulino et al. 
[16] have measured the lengths of extensive de- 
bonding zones along the fibre with increasing com- 
posite stress. Neither study focused on the growth of 
debonding with time, though the latter study did note 
stress relaxation in the matrix. To the authors know- 
ledge, models for the time dependent growth of the 
debond zone through crack growth along the interface 
have not appeared in the literature. Nevertheless mo- 
dels for Mode I crack growth in viscoelastic materials, 
as developed by Schapery [17] and by Christensen 
and colleagues [18, 19], may shed some light espe- 
cially in the case where the matrix creep compliance 
assumes a power law as is assumed here. When the 
creep exponent 0 is small, their results indicate that the 
crack velocity is approximately proportional to K ]/e, 
where ~K~ is the elastic stress intensity factor. Making 
the assumption that a similar result would apply to 
Mode II crack growth in shear, this situation has a 
similar scaling to the constitutive law described by 
Equation 36 Where ~o = 2/0 and 0 ' =  1. Making a 
further assumption that the reduction in stress intens- 
ity factor with increasing 5(0 has a scaling similar to 
that which occurred in the analysis leading to Equa- 
tion 37, one arrives at the approximate result 

5( 0 ~ t~ for 0 small (39) 

Following the same steps as produced Equation 38, 
one finds that again 13 = ct0/2 but p* changes to 

p** = 2(2~ + 1)/(ct0) (40) 

which for typical values of ~ is only slightly larger than 
19". In essence, the scaling of the basic results with 0 is 
changed little and in the wrong direction to explain 
the discrepancy in p* noted above. 

The above analysis ignores the potential import- 
ance of two other time-dependent aspects of the 
debonding process. First, chemical adhesion of the 
epoxy to the fibre is expected to be important, and 
the kinetics and activation energies of interface deco- 
hesion processes may lead to power law exponents 
different from those for viscoelastic creep, and differ- 
ent also for different epoxies and fibre surface treat- 
ments. Furthermore, Whitney and Drzal [20] show 
significant transverse compressive stresses may exist at 
the interface due primarily to matrix shrinkage during 
curing. These compressive stresses lead to frictional 
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shear stresses behind the debond front which may 
serve to reduce markedly the Mode II stress intensity 
factor for crack growth along the interface. Gulino et 

al. [ 16] experimentally estimated these frictional shear 
stresses to 'be  of the order of one-half the apparent 
debond stresses in their three-fibre composites. Should 
the interface slip in the debond zone following some 
kintetic process, this would lead to a relaxation of 
these restraining, frictional shear stresses and an in- 
crease the tendency to debond further. 

Note that the magnitudes of compressive stresses at 
the interface depend strongly on the volume fraction 
of the matrix in the composite. They are probably 
largest in the single-fibre-composite test and are much 
lower in the microcomposites of this study because of 
the closeness of the fibres and the thin layer of epoxy 
on the surface, as we see shortly. In a typical com- 
posite, with a volume fraction of matrix of say 45%, 
the magnitudes of the compressive stresses would be 
somewhere in between these two cases. 

5.3. Comparison of results with earlier work 
using a different epoxy 

The results obtained here differ in important ways 
from those obtained earlier by Phoenix et al. [1] using 
similar fibres but a different epoxy matrix (Dow DER 
331 epoxy with DEH 26 curing agent). Apart from 
some minor differences in the strength statistics for the 
respective fibres, the value of 5 was found to be about 
three times larger and the value of the creep exponent 
0 nearly double the corresponding values in the earlier 
work. These differences point to the possibility of 
important differences in the epoxies and how the 
epoxies bonded to the fibres. We have found the bulk 
mechanical properties from standard dogbone speci- 
mens of the two epoxies to differ somewhat. The 
Young's moduli of the two epoxies were approxim- 
ately equal at about 2000 MPa. The apparent ultimate 
stresses were, however, respectively 50 MPa here as 
opposed to 65 MPa there and the epoxy failure strains 
were about 5 to 6% here as compared with 7 to 9% 
there. While these differences are in the right direction, 
they are insufficient in magnitude to explain the large 
differences in 5 and 0. 

We also, constructed some single-fibre-composite 
(SFC) specimens for both epoxies following the pro- 
cedure of Netravali et al. [3]. The mean fragmentation 
lengths were only about 20% larger for the present 
epoxy over the previous one, not double to triple as 
would be required to explain the difference in 5. There 
were, however, interesting differences in the birefrin- 
gence patterns at fibre breaks reflecting the tendencies 
for the epoxies to crack transversely at the fibre break 
and for debonding at the interface to occur. Both 
effects appeared to be more prevalent in the present 
epoxy system. As mentioned, the high volume fraction 
of epoxy in the SFC test probably results in much 
higher compressive stresses at the interface than occur 
in the corresponding seven-fibre microcomposites, so 
that frictional stresses in the debond zone can be 
expected to be higher. Also, there are no fibres nearby 
(as in the three-fibre experiment of Gulino et al. [16]) 
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to enhance the shear stresses in the matrix between the 
fibres. Thus, it is probably unrealistic to expect the 
SFC test to corroborate the differences observed be- 
tween the seven-fibre composites of the two studies. 

5.4. Studies of microcomposite fracture 
surfaces 

Fig. 15 shows scanning electron micrographs of both a 
polished cross-section (Fig. 15a) and an outer surface 
(Fig. 15b) of two microcomposites. About 25% of the 
specimens had an almost perfectly hexagonal cross- 
section as in Fig. 1 with the fibres virtually touching, 
but the remainder had irregularities similar to those 
shown in Fig. 15a with some fibres almost touching 
but others with spacings of up to 3 gm. Both the 
wetting of the epoxy and its bonding to the fibres 
appeared to be excellent, and before testing the out- 
side surfaces were very smooth as shown except for the 
occasional benign bead of epoxy. The epoxy thickness 
of the very outside of the fibres was typically 1/4 to 
1 gm, the microcomposites appeared to be void free 
and the volume fraction of epoxy was about 20%, 
which is lower than for a typical large-scale composite. 

Fig. 16 shows scanning electron micrographs of two 
fracture zones, one with a single fibre break (a) and 
one with five broken fibres (b). In the latter case the 
other two fibres were severed at a point about 30 fibre 

Figure 15 Micrographs of a cross-section (a) and longitudinal view 
(b) of a microcomposite showing typical geometric irregularities and 
excellent wetting and uniformity of the epoxy. 



probably led to significantly higher volume fractions 
of epoxy in their microcomposites. 

5.5. Predicted behaviour of large composite 
structures 

As shown in Phoenix et  al. [1], the value of the power 
law exponent p* for long times and lower stresses 
tends to the value p = 2~/(~0) which lies in the range 
27 to 37 depending on our method for arriving at p*. 
These values are much smaller than values of 80 to 120 
which are generally believed to be appropriate on the 
basis of limited experiments on epoxy-impregnated 
strands as reported for example by Shaffer [21]. Dif- 
ferences would have to be explained in terms of major 
differences in matrix creep, the tendency for the fibres 
to debond from the epoxy, or epoxy volume fraction 
effects. 

Figure 16 Micrographs of isolated single break (a) and fracture 
surface (b) in two different specimens. 

diameters to the left, and the epoxy appeared to show 
a mixture of both cracking in between the fibres and 
debonding from the fibres. In other words, debonding 
was not "clean" as many torn "chunks" of epoxy could 
be seen attached to the surface, suggesting excellent 
adhesion. Around the single fibre break, debonding is 
apparent but there is also evidence of good epoxy 
adhesion. Interestingly there appears to be evidence of 
shear banding and large scale deformation in the 
epoxy, far beyond the 5 to 7% failure strain of bulk 
specimen. Other views of this failure surface suggest 
possible strains of 30 to 50%. 

Caution should be exercised in interpreting these 
micrographs, especially Fig. 16b, 'since one cannot 
know the role of wave propagation and resulting 
buckling and bending after the initial energy release. 
We saw many cases where failure surfaces were trans- 
verse over a longitudinal zone of one or two fibre 
diameters, but these may not have been the initial 
fracture zones but rather bending failures due to re- 
coil. Nevertheless, much of the fractographic evidence 
is consistent with a mixture of epoxy cracking and 
debonding around fibre breaks as well as large load 
transfer lengths. Also, time dependent crack growth 
and debonding is suggested to be a key feature in the 
creep-rupture process. Unfortunately no fracto- 
graphic studies were done by Phoenix et  al. [21] but 
their fabrication techniques and epoxy viscosities 

5.6. Limiting distribution for bundle strength 
assuming total debonding 

It is interesting to compare the fraction of failed 
specimens at the end of the experiment with the frac- 
tion that would be predicted assuming the seven fibres 
form a simple bundle with no matrix. For this calcu- 
lation we use Daniels' classic result [22] for the 
strength of a loose bundle of fibres including modifica- 
tions by McCartney and Smith [23] to provide correc- 
tion terms for small bundles. This result would apply 
under the assumption that the epoxy matrix eventu- 
ally debonds completely from the fibre leaving only a 
loose bundle. 

Under this theory a bundle of n fibres has strength 
which is approximately normally distributed with 
m e a n  

g ,  = c~t~ - 1/~e - 1/r~[1 Jr- 0 . 9 6 6 n -  Z/3~-1/~e  2/~3~)] 
(41) 

and standard deviation 

s, = ~l~-1/~[ e ~/~(1 - e 1/~)]1/2 (42) 

From exact numerical calculations, we have found 
these results to be surprisingly accurate even for a 
bundle of only seven fibres. For  the present fibres of 
l = 3 0 m m  we calculate la 7 = 3 9 6 6 M P a  and 
sv = 519 MPa. 

At the 83% stress level (4101 MPa) the fraction of 
failed bundles is predicted to be 0.603 from this result 
(using standard normal tables), as compared with the 
actual fraction 0.90 at the end of the experiment. 
Accounting for creep-rupture of the individual fibres 
by adapting the results of Farquhar et  al. [2], the 
strength of each fibre at the end of the experiment 
(4.4 x 10 6 seconds) is estimated to be about 
(4.4 x 106) - 1 / 3 ~ 1 7 6  0.95 times the starting value, so 
the mean and standard deviation of the bundle 
strength would be reduced further to g7 = 3767 MPa 
and s 7 = 493 MPa respectively. Thus, at the end of the 
experiment the fraction of failed bundles is predicted 
to be 0.75 which is still lower than the fraction 0.90 
observed. On the other hand, at the start of the 
experiment at the 83% stress level, the fraction of 
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failed microcomposite specimens was observed to be 
only 0.07 as compared to 0.603 for the simple bundle. 
Thus we have the interesting situation where the 
epoxy matrix initially improves the microcomposite 
strength over that of a simple bundle, but in the end is 
detrimental to the creep-rupture performance over 
what one would have achieved with a simple bundle 
without a matrix. 

6. Conclusions 
We have generated experimental results on both the 
strength and the lifetime in creep rupture of 
carbon-epoxy microcomposites. These composites 
consisted of seven carbon fibres (Hercules IM6) of 
almost identical cross-sectional area within an epoxy 
matrix (Dow DER 332 epoxy with Texaco Jeffamine 
T403 curing agent) in an approximately hexagonal 
configuration, and had a gauge length of 30 mm. We 
also generated extensive statistics on the strength of 
the single fibres at gauge lengths 10, 30 and 100 mm in 
order to provide basic information for the model. 
Special attention was paid to clamping, specimen 
alignment, shock isolation and accurate lifetime meas- 
urement at small times. Thus, some experimental 
problems encountered in a previous study of Phoenix 
et al. [-1] were eliminated. The results were analysed 
using the theoretical model of these authors, which 
involves a Weibull distribution for fibre strength and 
micromechanical stress redistribution around fibre 
breaks where the matrix creeps or debonds in shear 
following a power law. The model yields Weibull 
distribution envelopes for both microcomposite 
strength and lifetime where the respective shape and 
scale parameters depend on model parameters such as 
the Weibull shape parameter for fibre strength, the 
exponent for matrix creep, and the effective load trans- 
fer length and critical cluster size for failed fibres. 
Depending on the load and time range, the critical 
cluster size, k, was either two or three. The experi- 
mental results were consistent with the theory and 
compared with results of the earlier study [1] using a 
different epoxy system (Dow DER 331 epoxy with 
DEH 26 curing agent). Values for the matrix creep 
exponent and the effective load transfer length were 
about double and triple respectively the values from 
the earlier study, leading to slightly reduced strength, 
about one-half the variability in lifetime, but almost 
one-half the value of the exponent for the power law 
relating microcomposite stress level to lifetime. Effect- 
ive load transfer lengths were calculated from the 
model to be sufficiently large at longer times to implic- 
ate time-dependent debonding along the fibre-matrix 
interface or matrix cracking as the dominant mech- 
anism driving the creep rupture process. This view was 
consistent with the fractographic evidence. 
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